- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0002200000000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Lin, Yingyu (4)
-
Bu, Zhiqi (3)
-
Ma, Yian (3)
-
Wang, Yu-Xiang (3)
-
Redberg, Rachel E (2)
-
Deng, Haoran (1)
-
Gong, Mingming (1)
-
Huang, Biwei (1)
-
Huang, Yuxing (1)
-
Liu, Wenqin (1)
-
Ma, Yi-An (1)
-
Ng, Ignavier (1)
-
Redberg, Rachel (1)
-
Zhang, Kun (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect Y is modeled as Y = f(X) + σ(X)N, with X as the cause and N as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method.more » « lessFree, publicly-accessible full text available April 24, 2026
-
Lin, Yingyu; Ma, Yi-An; Wang, Yu-Xiang; Redberg, Rachel; Bu, Zhiqi (, ICLR 2024)Posterior sampling, i.e., exponential mechanism to sample from the posterior distribution, provides ε-pure differential privacy (DP) guarantees and does not suffer from potentially unbounded privacy breach introduced by (ε,δ)-approximate DP. In practice, however, one needs to apply approximate sampling methods such as Markov chain Monte Carlo (MCMC), thus re-introducing the unappealing δ-approximation error into the privacy guarantees. To bridge this gap, we propose the Approximate SAample Perturbation (abbr. ASAP) algorithm which perturbs an MCMC sample with noise proportional to its Wasserstein-infinity (W∞) distance from a reference distribution that satisfies pure DP or pure Gaussian DP (i.e., δ=0). We then leverage a Metropolis-Hastings algorithm to generate the sample and prove that the algorithm converges in W∞ distance. We show that by combining our new techniques with a localization step, we obtain the first nearly linear-time algorithm that achieves the optimal rates in the DP-ERM problem with strongly convex and smooth losses.more » « less
-
Lin, Yingyu; Ma, Yian; Wang, Yu-Xiang; Redberg, Rachel E; Bu, Zhiqi (, The Twelfth International Conference on Learning Representations)
-
Lin, Yingyu; Ma, Yian; Wang, Yu-Xiang; Redberg, Rachel E; Bu, Zhiqi (, The Twelfth International Conference on Learning Representations)
An official website of the United States government

Full Text Available